High-content cellular screen image analysis benchmark study

Author:

Bray Mark-Anthony,de Weck Antoine,Durand Eric,Fang Jian,Gabriel Daniela,Janssens Rens,Moutsatsos Ioannis,Spiegel Stephan,Zhang XianORCID

Abstract

AbstractRecent development of novel methods based on deep neural networks has transformed how high-content microscopy cellular images are analyzed. Nonetheless, it is still a challenge to identify cellular phenotypic changes caused by chemical or genetic treatments and to elucidate the relationships among treatments in an unsupervised manner, due to the large data volume, high phenotypic complexity and the presence of a priori unknown phenotypes. Here we benchmarked five deep neural network methods and two feature engineering methods on a well-characterized public data set. In contrast to previous benchmarking efforts, the manual annotations were not provided to the methods, but rather used as evaluation criteria afterwards. The seven methods individually performed feature extraction or representation learning from cellular images, and were consistently evaluated for downstream phenotype prediction and clustering tasks. We identified the strengths of individual methods across evaluation metrics, and further examined the biological concepts of features automatically learned by deep neural networks.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3