SHIVIR - An Agent-Based Model to assess the transmission of COVID-19 in India

Author:

Narassima M.S.,John DennyORCID,Anbuudayasankar S.P.,Jammy Guru Rajesh,Pant Rashmi,Choudhury Lincoln

Abstract

AbstractBackgroundCOVID-19 has tormented the global health and economy like no other event in the recent past. Researchers and policymakers have been working strenuously to end the pandemic completely.Methodology/Principal FindingsInfectious disease dynamics could be well-explained at an individual level with established contact networks and disease models that represent the behaviour of the infection. Hence, an Agent-Based Model, SHIVIR (Susceptible, Infected, Admitted, ICU, Ventilator, Recovered, Immune) that can assess the transmission dynamics of COVID-19 and the effects of Non-Pharmaceutical Interventions (NPI) was developed. Two models were developed using to test the synthetic populations of Rangareddy, a district in Telangana state, and the state itself respectively. NPI such as lockdowns, masks, and social distancing along with the effect of post-recovery immunity were tested across scenarios.The actual and forecast curves were plotted till the unlock phase began in India. The Mean Absolute Percentage Error of scenario MD100I180 was 6.41 percent while those of 3 other scenarios were around 10 percent each. Since the model anticipated lifting of lockdowns that would increase the contact rate proportionately, the forecasts exceeded the actual estimates. Some possible reasons for the difference are discussed.ConclusionsModels like SHIVIR that employ a bottom-up Agent-Based Modelling are more suitable to investigate various aspects of infectious diseases owing to their ability to hold details of each individual in the population. Also, the scalability and reproducibility of the model allow modifications to variables, disease model, agent attributes, etc. to provide localized estimates across different places.Author SummaryThe world has witnessed several infectious disease outbreaks from time to time. COVID-19 is one such event that tormented the life of mankind. Healthcare practitioners, policymakers, and governments struggled enormously to handle the influx of infections and devise suitable interventions. Agent-Based Models that use the population data could cater to these requirements better. Hence, we developed a disease model that represents various states acquired by COVID-19 infected individuals. The contact network among the individuals in the population was defined based on which the simulation progresses. The effect of various Non-Pharmaceutical Interventions such as lockdowns, the use of masks and social distancing along with post-recovery immunity were enacted considering two case studies viz. population of Rangareddy district and Telangana state. The capability of these models to adapt to different input data fields and types make them handy to be tailored based on available inputs and desired outputs. Simulating them using local population data would fetch useful estimates for policymakers.

Publisher

Cold Spring Harbor Laboratory

Reference58 articles.

1. INFEKTA—An agent-based model for transmission of infectious diseases: The COVID-19 case in Bogotá, Colombia

2. WHO. World Health Organization. 2020. Available: https://www.who.int/

3. Worldometer. Worldometer - Coronavirus Update (Live). In: Worldometer [Internet]. 2020 [cited 12 Apr 2020]. Available: https://www.worldometers.info/coronavirus/

4. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak

5. Global supply-chain effects of COVID-19 control measures

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3