Arabidopsis cell suspension culture that lacks circadian rhythms can be recovered by constitutive ELF3 expression

Author:

Laosuntisuk KanjanaORCID,Desai Jigar S.ORCID,Doherty Colleen J.ORCID

Abstract

AbstractCallus and cell suspension culture techniques are valuable tools in plant biotechnology and are widely used in fundamental and applied research. For studies in callus and cell suspension cultures to be relevant, it is essential to know if the underlying biochemistry is similar to intact plants. This study examined the expression of core circadian genes in Arabidopsis callus from the cell suspension named AT2 and found that the circadian rhythms were impaired. The circadian waveforms are similar to intact plants in the light/dark cycles, but the circadian expression in the AT2 callus stopped in the free-running, constant light conditions. Temperature cycles could drive the rhythmic expression in constant conditions, but there were novel peaks at the point of temperature transitions unique to each clock gene. We found that callus freshly induced from seedlings had normal oscillations, like intact plants, suggesting that the loss of the circadian oscillation in the AT2 callus was specific to this callus. We determined that neither the media composition nor the source of the AT2 callus caused this disruption. We observed that ELF3 expression was not differentially expressed between dawn and dusk in both entrained, light-dark cycles and constant light conditions. Overexpression of ELF3 in the AT2 callus partially recovers the circadian oscillation in the AT2 callus. This work shows that while callus and cell suspension cultures can be valuable tools for investigating plant responses, careful evaluation of their phenotype is important. Moreover, the altered circadian rhythms under constant light and temperature cycles in the AT2 callus could be useful backgrounds to understand the connections driving circadian oscillators and light and temperature sensing at the cellular level.

Publisher

Cold Spring Harbor Laboratory

Reference128 articles.

1. Reciprocal Regulation Between TOC1 and LHY / CCA1 Within the Arabidopsis Circadian Clock

2. Timing to Perfection: The Biology of Central and Peripheral Circadian Clocks

3. Andrews, Simon . 2010. “FastQC: A Quality Control Tool for High Throughput Sequence Data.” 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

4. Pluripotency of Arabidopsis Xylem Pericycle Underlies Shoot Regeneration from Root and Hypocotyl Explants Grown in Vitro;The Plant Journal: For Cell and Molecular Biology,2009

5. “Babraham Bioinformatics - FastQC A Quality Control Tool for High Throughput Sequence Data.” n.d. Accessed September 21, 2021. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3