Evaluation of metagenomic, 16S rRNA gene and ultra-plexed PCR-based sequencing approaches for profiling antimicrobial resistance gene and bacterial taxonomic composition of polymicrobial samples

Author:

Chau KK,Matlock W,Constantinides B,Lipworth SORCID,Newbold L,Tipper H,Goodall T,Brett H,Hughes J,Crook DW,Eyre DW,Read DS,Walker AS,Stoesser NORCID

Abstract

AbstractBackgroundShotgun metagenomic sequencing is increasingly popular in taxonomic and resistome-profiling of polymicrobial samples due to its agnostic nature and data versatility. However, caveats include high- cost, sequencing depth/sensitivity trade-offs, and challenging bioinformatic deconvolution. Targeted PCR-based profiling optimises sensitivity and cost-effectiveness, but can only identify prespecified targets and may introduce amplification biases. Ultra-high multiplexed PCR is a potential compromise. As no comprehensive comparative evaluation exists, we evaluated performance of each method in taxonomic/resistome-profiling of a well-defined DNA mock sample and seven “real- world” wastewater samples.ResultsWe tested three sequencing approaches (short-read shotgun metagenomics, Illumina Ampliseq™ ultra-plexed AMR Research Panel, 16S rRNA gene sequencing) with seven bioinformatic pipelines (ResPipe, Illumina DNA Amplicon App, One Codex Metagenomic-/Targeted Loci classification and Ampliseq™ Report, DADA2, and an in-house pipeline for AmpliSeq data [AmpliSeek]). Metagenomics outperformed 16S rRNA gene sequencing in accurately reconstituting a mock taxonomic profile and optimising the identification of diverse wastewater taxa, while 16S rRNA gene sequencing produced more even taxonomic outputs which may be quantitatively inaccurate but enhance detection of low abundance taxa. Shotgun metagenomic and AmpliSeq sequencing performed equally well in profiling AMR genes present in a mock sample, but AmpliSeq identified more genes in more complex, “real-world” samples, likely related to sensitivity of detection at the metagenomic sequencing depth used.ConclusionsA complementary sequencing approach employing 16S rRNA gene or shallow-metagenomic sequencing for taxonomic profiling, and the AmpliSeq AMR panel for high-resolution resistome profiling represents a potential lower-cost alternative to deep shotgun sequencing and may also be more sensitive for the detection of low-prevalence AMR genes. However, our evaluation highlights that both the sequencing and bioinformatics approach used can significantly influence results; for AmpliSeq AMR gene profiling, we developed AmpliSeek which outperformed the other pipelines tested and is open source. Sequencing approach and bioinformatic pipeline should be considered in the context of study goals and sample type, with study-specific validation when feasible.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3