Single photon kilohertz frame rate imaging of neural activity

Author:

Tian Tian,Yuan Yifang,Mitra Srinjoy,Gyongy Istvan,Nolan Matthew F

Abstract

AbstractEstablishing the biological basis of cognition and its disorders will require high precision spatiotemporal measurements of neural activity. Recently developed genetically encoded voltage indicators (GEVIs) report both spiking and subthreshold activity of identified neurons. However, maximally capitalising on the potential of GEVIs will require imaging at the millisecond time scales, which remains challenging with standard camera systems. Here we report application of single photon avalanche diode (SPAD) sensors to imaging neural activity at kilohertz frame rates. SPADs are electronic devices that when activated by a single photon cause an avalanche of electrons and a large electric current. We use an array of SPAD sensors to image individual neurons expressing genetically encoded voltage indicators. We show that subthreshold and spiking activity can be resolved with shot noise limited signals at frame rates of up to 10 kHz. SPAD imaging was able to reveal millisecond scale synchronisation of neural activity in an ex-vivo seizure model. SPAD sensors may have widespread applications for investigation of millisecond timescale neural dynamics.Table of contentsThe high temporal precision of single photon avalanche diodes (SPADs) is leveraged to record neural activity reported by genetically encoded voltage indicators. Sub-threshold and spiking activity of single neurons was resolved with shot noise limited signals at frame rates of up to 10 kHz. SPAD sensors may have widespread applications for neural imaging at high frame rates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3