Foxe1 orchestrates thyroid and lung cell lineage divergence in mouse stem cell-derived organoids

Author:

Fonseca Barbara F.,Barbée Cindy,Romitti MirianORCID,Eski Sema Elif,Gillotay Pierre,Monteyne Daniel,Morga David Perez,Refetoff SamuelORCID,Singh Sumeet PalORCID,Costagliola SabineORCID

Abstract

SummaryPatterning of endoderm into lung and thyroid lineages depends upon a correct early expression of a homeobox domain-containing transcription factor, Nkx2-1. However, the gene networks distinguishing the differentiation of those lineages remain largely unknown. In the present work, by using mouse embryonic stem cell lines, single-cell RNA sequencing, and transcriptomic and chromatin accessibility profiling, we show that knockout of Foxe1 drastically impairs Nkx2-1+ cells differentiation and maturation into thyroid follicular-like cells. Concomitantly, a subset of Foxe1 null/Nkx2-1+ cells have a remarkable ability in vitro to undergo a lung epithelial differentiation program and form lung-like organoids harboring cells transcriptionally similar with mouse fetal airway and alveolar cell types. These results demonstrate, for the first time, lung lineage derivation at the expense of thyroid lineage, by a simple removal of a transcription factor, and provide insights into the intricated mechanisms of fate decisions of endodermal cell types.Highlights- Forward programming of mESCs with transient Nkx2-1 and Pax8 overexpression, followed by c-AMP treatment, leads to differentiation of functional thyroid follicles in vitro;- In absence of Foxe1, thyroid follicle-like structures, derived from mESCs, are scarce and non-functional;- Concomitantly, a subset of Nkx2-1-expressing cells generated from Foxe1KO mESCs spontaneously form lung organoids containing multiple differentiated lung cell types;- ATACseq analyses show higher chromatin remodeling in Nkx2-1-expressing cells in control compared to Foxe1KO cells, especially for genes involved in thyroid maturation and maintenance of the 3D structure of the follicle.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3