Learning consistent subcellular landmarks to quantify changes in multiplexed protein maps

Author:

Spitzer HannahORCID,Berry ScottORCID,Donoghoe MarkORCID,Pelkmans LucasORCID,Theis Fabian J.ORCID

Abstract

AbstractHighly multiplexed quantitative subcellular imaging holds enormous promise for understanding how spatial context shapes the activity of our genome and its products at multiple scales. Yet unbiased analysis of subcellular organisation across experimental conditions remains challenging, because differences in molecular profiles between conditions confound differences in molecular profiles across space. Here, we introduce a deep-learning framework called CAMPA (Conditional Autoencoder for Multiplexed Pixel Analysis), which uses a variational autoencoder conditioned on cellular states and perturbations to learn consistent molecular signatures. Clustering the learned representations into subcellular landmarks allows quantitative comparisons of landmark sizes, shapes, molecular compositions and relative spatial organisation between conditions. By performing high-resolution multiplexed immunofluorescence on human cells, we use CAMPA to reveal how subnuclear organisation changes upon different perturbations of RNA production or processing, and how different membraneless organelles scale with cell size. Furthermore, by integrating information across the cellular and subcellular scales, we uncover new links between the molecular composition of membraneless organelles and bulk RNA synthesis rates of single cells. We anticipate that CAMPA will greatly accelerate the systematic mapping of multiscale atlases of biological organisation to identify the rules by which context shapes physiology and disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3