ERnet: a tool for the semantic segmentation and quantitative analysis of endoplasmic reticulum topology for video-rate super-resolution imaging

Author:

Lu Meng,Christensen Charles N.,Weber Jana M.,Konno Tasuku,Läubli Nino F.,Scherer Katharina M.,Avezov EdwardORCID,Lio Pietro,Lapkin Alexei A.,Kaminski Schierle Gabriele S.,Kaminski Clemens F.

Abstract

AbstractThe topology of endoplasmic reticulum (ER) network is highly regulated by various cellular and environmental stimuli and affects major functions such as protein quality control and the cell’s response to metabolic changes. The ability to quantify the dynamical changes of the ER structures in response to cellular perturbations is crucial for the development of novel therapeutic approaches against ER associated diseases, such as hereditary spastic paraplegias and Niemann Pick Disease type C. However, the rapid movement and small spatial dimension of ER networks make this task challenging. Here, we combine video-rate super-resolution imaging with a state-of-the-art semantic segmentation method capable of automatically classifying sheet and tubular ER domains inside individual cells. Data are skeletonised and represented by connectivity graphs to enable the precise and efficient quantification and comparison of the network connectivity from different complex ER phenotypes. The method, called ERnet, is powered by a Vision Transformer architecture, and integrates multi-head self-attention and channel attention into the model for adaptive weighting of frames in the time domain. We validated the performance of ERnet by measuring different ER morphology changes in response to genetic or metabolic manipulations. Finally, as a means to test the applicability and versatility of ERnet, we showed that ERnet can be applied to images from different cell types and also taken from different imaging setups. Our method can be deployed in an automatic, high-throughput, and unbiased fashion to identify subtle changes in cellular phenotypes that can be used as potential diagnostics for propensity to ER mediated disease, for disease progression, and for response to therapy.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. Scale-free networks in cell biology

2. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification

3. Retarded PDI diffusion and a reductive shift in poise of the calcium depleted endoplasmic reticulum;BMC biology,2015

4. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction;Nature methods,2019

5. Complex networks: structure and dynamics;Phys Rep,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3