Oceans apart: Heterogeneous patterns of parallel evolution in sticklebacks

Author:

Fang BohaoORCID,Kemppainen Petri,Momigliano Paolo,Feng Xueyun,Merilä Juha

Abstract

AbstractAn important model system for the study of genomic mechanisms underlying parallel ecological adaptation in the wild is the three-spined stickleback (Gasterosteus aculeatus), which has repeatedly colonized and adapted to freshwater from the sea throughout the northern hemisphere. Previous studies have identified numerous genomic regions showing consistent genetic differentiation between freshwater and marine ecotypes, but these are typically based on limited geographic sampling and are biased towards studies in the Eastern Pacific. We analysed population genomic data from marine and freshwater ecotypes of three-spined sticklebacks with from a comprehensive global collection of marine and freshwater ecotypes to detect loci involved in parallel evolution at different geographic scales. Our findings highlight that most signatures of parallel evolution were unique to the Eastern Pacific. Trans-oceanic marine and freshwater differentiation was only found in a very limited number of genomic regions, including three chromosomal inversions. Using both simulations and empirical data, we demonstrate that this is likely due to both the stochastic loss of freshwater-adapted alleles during founder events during the invasion of the Atlantic basin and selection against freshwater-adapted variants in the sea, both of which have reduced the amount of standing genetic variation available for freshwater adaptation outside the Eastern Pacific region. Moreover, the existence of highly elevated linkage disequilibrium associated with marine-freshwater differentiation in the Eastern Pacific is also consistent with a secondary contact scenario between marine and freshwater populations that have evolved in isolation from each other during past glacial periods. Thus, contrary to what earlier studies focused on Eastern Pacific populations have led us to believe, parallel marine-freshwater differentiation in sticklebacks is far less prevalent and pronounced in all other parts of the species global distribution range.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3