Lossless indexing with counting de Bruijn graphs

Author:

Karasikov MikhailORCID,Mustafa HarunORCID,Rätsch GunnarORCID,Kahles AndréORCID

Abstract

Sequencing data are rapidly accumulating in public repositories. Making this resource accessible for interactive analysis at scale requires efficient approaches for its storage and indexing. There have recently been remarkable advances in building compressed representations of annotated (or colored) de Bruijn graphs for efficiently indexing k-mer sets. However, approaches for representing quantitative attributes such as gene expression or genome positions in a general manner have remained underexplored. In this work, we propose counting de Bruijn graphs, a notion generalizing annotated de Bruijn graphs by supplementing each node–label relation with one or many attributes (e.g., a k-mer count or its positions). Counting de Bruijn graphs index k-mer abundances from 2652 human RNA-seq samples in over eightfold smaller representations compared with state-of-the-art bioinformatics tools and is faster to construct and query. Furthermore, counting de Bruijn graphs with positional annotations losslessly represent entire reads in indexes on average 27% smaller than the input compressed with gzip for human Illumina RNA-seq and 57% smaller for Pacific Biosciences (PacBio) HiFi sequencing of viral samples. A complete searchable index of all viral PacBio SMRT reads from NCBI's Sequence Read Archive (SRA) (152,884 samples, 875 Gbp) comprises only 178 GB. Finally, on the full RefSeq collection, we generate a lossless and fully queryable index that is 4.6-fold smaller than the MegaBLAST index. The techniques proposed in this work naturally complement existing methods and tools using de Bruijn graphs, and significantly broaden their applicability: from indexing k-mer counts and genome positions to implementing novel sequence alignment algorithms on top of highly compressed graph-based sequence indexes.

Funder

Swiss National Science Foundation

ETH core funding

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Reference47 articles.

1. A unified catalog of 204,938 reference genomes from the human gut microbiome

2. Almodaresi F , Pandey P , Patro R . 2017. Rainbowfish: a succinct colored de Bruijn graph representation. In 17th International Workshop on Algorithms in Bioinformatics (WABI 2017) (ed. Schwartz R , Reinert K ), Vol. 88, pp. 18:1–18:15. Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik Dagstuhl, Germany.

3. A space and time-efficient index for the compacted colored de Bruijn graph

4. An Efficient, Scalable, and Exact Representation of High-Dimensional Color Information Enabled Using de Bruijn Graph Search

5. PuffAligner: a fast, efficient and accurate aligner based on the Pufferfish index

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3