Exploring a large cancer cell line RNA-sequencing dataset with k-mers

Author:

Bessière Chloé,Xue HaoliangORCID,Guibert Benoit,Boureux Anthony,Rufflé Florence,Viot JulienORCID,Chikhi RayanORCID,Salson Mikaël,Marchet CamilleORCID,Commes ThérèseORCID,Gautheret DanielORCID

Abstract

AbstractAnalyzing the immense diversity of RNA isoforms in large RNA-seq repositories requires laborious data processing using specialized tools. Indexing techniques based on k-mers have previously been effective at searching for RNA sequences across thousands of RNA-seq libraries but falling short of enabling direct RNA quantification. We show here that RNAs queried in the form of k-mer sets can be quantified in seconds, with a precision akin to that of conventional RNA quantification methods. We showcase several applications by exploring an index of the Cancer Cell Line Encyclopedia (CCLE) collection consisting of 1019 RNA-seq samples. Non-reference RNA sequences such as RNAs harboring driver mutations and fusions, splicing isoforms or RNAs derived from repetitive elements, can be retrieved with high accuracy. Moreover, we show that k-mer indexing offers a powerful means to reveal variant RNAs induced by specific gene alterations, for instance in splicing factors. A web server allows public queries in CCLE and other indexes:https://transipedia.fr. Code is provided to allow users to set up their own server from any RNA-seq dataset.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3