Large-scale nuclear remodeling and transcriptional deregulation occur on both derivative chromosomes after Mantle Cell Lymphoma chromosomal translocation

Author:

Sall Fatimata Bintou,Pichugin Andrei,Iarovaia Olga,Barat Ana,Tsfasman Tatyana,Brossas Caroline,Prioleau Marie-Noëlle,Sheval Eugeny V.,Zharikova Anastasiya A.,Lazarovici Julien,Camara-Clayette Valérie,Ribrag Vincent,Lipinski Marc,Vassetzky YegorORCID,Germini DiegoORCID

Abstract

ABSTRACTRecurrent chromosomal translocations are found in many blood and solid cancers. Balanced translocations, frequent in lymphoid malignancies, lead to the formation of two aberrant derivative (der) chromosomes. This event often leads to overexpression of an oncogene. In many cases, the expression of an oncogene is not enough to produce a malignant phenotype; however, most part of the studies focus on the events involving the chromosome where the oncogene is located, but rarely the other der chromosome where other oncogenic alterations may potentially arise. Mantle cell lymphoma (MCL), an aggressive B-cell non-Hodgkin lymphoma, is a perfect example of this. In 85% of the cases, it is characterized by the translocation t(11;14), which leads to the overexpression of cyclin D1 (CCND1) gene which results juxtaposed to the immunoglobulin heavy chain (IGH) gene on the der14 chromosome. This feature alone is not sufficient to induce oncogenesis. Here we focused on the der11 chromosome. We demonstrated that expression of 88 genes located in a 15mb region close to the translocation breakpoint on the der11 was deregulated both in the GRANTA-519 MCL cell line and in B-cells from MCL patients. We found that a large segment of der11containing deregulated genes was relocated from its normal position in the nuclear periphery towards the center of the nucleus in close proximity to the nucleolus where the abundant nucleolar protein nucleolin binds a subset of genes located close to the breakpoint and activates their expression. This finding allowed to identify new potential oncogenes involved in MCL and the mechanisms of their upregulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3