Nonparametric Anomaly Detection on Time Series of Graphs

Author:

Ofori-Boateng Dorcas,Gel Yulia R.,Cribben Ivor

Abstract

AbstractIdentifying change points and/or anomalies in dynamic network structures has become increasingly popular across various domains, from neuroscience to telecommunication to finance. One of the particular objectives of the anomaly detection task from the neuroscience perspective is the reconstruction of the dynamic manner of brain region interactions. However, most statistical methods for detecting anomalies have the following unrealistic limitation for brain studies and beyond: that is, network snapshots at different time points are assumed to be independent. To circumvent this limitation, we propose a distribution-free framework for anomaly detection in dynamic networks. First, we present each network snapshot of the data as a linear object and find its respective univariate characterization via local and global network topological summaries. Second, we adopt a change point detection method for (weakly) dependent time series based on efficient scores, and enhance the finite sample properties of change point method by approximating the asymptotic distribution of the test statistic using the sieve bootstrap. We apply our method to simulated and to real data, particularly, two functional magnetic resonance imaging (fMRI) data sets and the Enron communication graph. We find that our new method delivers impressively accurate and realistic results in terms of identifying locations of true change points compared to the results reported by competing approaches. The new method promises to offer a deeper insight into the large-scale characterizations and functional dynamics of the brain and, more generally, into intrinsic structure of complex dynamic networks.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3