BitcoinHeist: Topological Data Analysis for Ransomware Prediction on the Bitcoin Blockchain

Author:

Akcora Cuneyt G.1,Li Yitao2,Gel Yulia R.3,Kantarcioglu Murat3

Affiliation:

1. University of Manitoba

2. Purdue University

3. The University of Texas at Dallas

Abstract

Recent proliferation of cryptocurrencies that allow for pseudo-anonymous transactions has resulted in a spike of various e-crime activities and, particularly, cryptocurrency payments in hacking attacks demanding ransom by encrypting sensitive user data. Currently, most hackers use Bitcoin for payments, and existing ransomware detection tools depend only on a couple of heuristics and/or tedious data gathering steps. By capitalizing on the recent advances in Topological Data Analysis, we propose a novel efficient and tractable framework to automatically predict new ransomware transactions in a ransomware family, given only limited records of past transactions. Moreover, our new methodology exhibits high utility to detect emergence of new ransomware families, that is, detecting ransomware with no past records of transactions.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. “Unveiling Cryptocurrencies”: An Analysis of a Discussion Forum on the Utilization of Bitcoin in Criminal Activities;Deviant Behavior;2024-09-04

2. XRAD: Ransomware Address Detection Method based on Bitcoin Transaction Relationships;ACM Transactions on the Web;2024-08-20

3. Blockchain Data Mining With Graph Learning: A Survey;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-02

4. Why topological data analysis detects financial bubbles?;Communications in Nonlinear Science and Numerical Simulation;2024-01

5. Detecting Malicious Blockchain Transactions Using Graph Neural Networks;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3