The Arabidopsis condensin CAP-D subunits arrange interphase chromatin

Author:

Municio CeliaORCID,Antosz WojciechORCID,Grasser Klaus D.ORCID,Kornobis EtienneORCID,Van Bel MichielORCID,Eguinoa IgnacioORCID,Coppens FrederikORCID,Bräutigam AndreaORCID,Lermontova InnaORCID,Bruckmann AstridORCID,Houben AndreasORCID,Schubert VeitORCID

Abstract

SUMMARYCondensins are best known for their role in shaping chromosomes. However, other functions as organizing interphase chromatin and transcriptional control have been reported in yeasts and animals. Yeasts encode one condensin complex, while higher eukaryotes have two of them (condensin I and II). Both, condensin I and II, are conserved in Arabidopsis thaliana, but so far little is known about their function. Here we show that the A. thaliana CAP-D2 (condensin I) and CAP-D3 (condensin II) subunits are highly expressed in mitotically active tissues. In silico and pull-down experiments indicate that both CAP-D proteins interact with the other condensin I and II subunits. Our data suggest that the expression, localization and composition of the condensin complexes in A. thaliana are similar as in other higher eukaryotes. Previous experiments showed that the lack of A. thaliana CAP-D3 leads to centromere association during interphase. To study the function of CAP-D3 in chromatin organization more in detail we compared the nuclear distribution of rDNA, of centromeric chromocenters and of different epigenetic marks, as well as the nuclear size between wild-type and cap-d3 mutants. In these mutants an association of heterochromatic sequences occurs, but nuclear size and the general methylation and acetylation patterns remain unchanged. In addition, transcriptome analyses revealed a moderate influence of CAP-D3 on general transcription, but a stronger one on transcription of stress-related genes. We propose a model for the CAP-D3 function during interphase, where CAP-D3 localizes in euchromatin loops to stiff them, and consequently separates centromeric regions and 45S rDNA repeats.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3