Mutualistic cross-feeding in microbial systems generates bistability via an Allee effect

Author:

Vet Stefan,Gelens Lendert,Gonze Didier

Abstract

ABSTRACTMutualistic interactions are characterized by the positive influence that two species exert on each other. Such mutualism can lead to bistability. Depending on the initial population size species will either survive or go extinct. Various phenomenological models have been suggested to describe bistability in mutualistic systems. However, these models do not account for interaction mediators such as nutrients. In contrast, nutrient-explicit models do not provide an intuitive understanding of what causes bistability. Here, we reduce a theoretical nutrient-explicit model of two mutualistic cross-feeders in a chemostat, uncovering an explicit relation to a growth model with an Allee effect. We show that the dilution rate in the chemostat leads to bistability by turning a weak Allee effect into a strong Allee effect. This happens as long as there is more production than consumption of cross-fed nutrients. Thanks to the explicit relationship of the reduced model with the underlying experimental parameters, these results allow to predict the biological conditions that sustain or prevent the survival of mutualistic species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3