Different salicylic and jasmonic acids imbalances are involved in the oxidative stress-mediated cell death, induced by fumonisin B1 in maize seedlings with contrasting resistance to Fusarium verticillioides ear rot in the field

Author:

Otaiza-González Santiago N.,Mary Verónica S.,Arias Silvina L.,Bertrand Lidwina,Velez Pilar A.,Rodriguez María G.,Rubinstein Héctor R.,Theumer Martín G.

Abstract

ABSTRACTBackground and aimFungal and plant secondary metabolites modulate the plant-pathogen interactions. However, the participation of fumonisins in the Fusarium verticillioides-maize pathosystem is unclear. In this work was studied the cell death, and the reactive oxygen species (ROS) - phytohormone imbalance interplay underlying the phytotoxicity of fumonisin B1 (FB1) in maize germplasms with contrasting resistance to Fusarium ear rot in the field.MethodsResistant (RH) and susceptible hybrid (SH) maize seedlings, grown from uninoculated seeds irrigated with FB1 (1 and 20 ppm), were harvested at 7, 14 and 21 days after planting, and were examined for electrolyte leakage (aerial parts); and for oxidative stress biomarkers (aerial parts and roots). The phytohormone (salicylic and jasmonic acids) imbalance interplay underlying the FB1-induced cell death were further explored in seedlings exposed 24 h to the mycotoxin (1 ppm) in hydroponics.ResultsCell death increased in RH and SH watered with 1 and 20 ppm of mycotoxin, respectively. Both toxin concentrations were pro-oxidant, and the major perturbations were found in roots. An Integrated Biomarker Response index was calculated suggesting that phytotoxicity occurs in a redox context more efficiently controlled by RH.ConclusionThe pre-treatment with the antioxidant ascorbic acid led to the conclusion that cell death in RH was related to a salicylic acid increase mediated by ROS. Nevertheless, FB1 induced two different phytohormonal regulatory mechanisms mediated by oxidative stress in both maize hybrids.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3