Population temporal structure supplements the rate code during sensorimotor transformations

Author:

Jagadisan Uday K.ORCID,Gandhi Neeraj J.ORCID

Abstract

AbstractSensorimotor transformations are mediated by premotor brain networks where individual neurons represent sensory, cognitive, and movement-related information. Such multiplexing poses a conundrum – how does a decoder know precisely when to initiate a movement if its inputs are active at times when a movement is not desired (e.g., in response to sensory stimulation)? Here, we propose a novel hypothesis: movement is triggered not only by an increase in firing rate, but critically by a reliable temporal pattern in the population response. Laminar recordings in the superior colliculus (SC), a midbrain region that plays an essential role in orienting eye movements, indicate that the temporal structure across neurons is a factor governing movement initiation. Specifically, using a measure that captures the fidelity of the population code - here called temporal stability - we show that the temporal structure fluctuates during the visual response but becomes increasingly stable during the movement command, even when the mean population activity is similar between the two epochs. Analyses of pseudo-populations in SC and cortical frontal eye fields (FEF) corroborated this model. We also used spatiotemporally patterned microstimulation to causally test the contribution of population temporal stability to movement initiation and found that stable stimulation patterns were more likely to evoke a movement, even when other features of the patterns such as mean pulse rates and population state subspaces were matched. Finally, a spiking neuron model was able to discriminate between stable and unstable input patterns, providing a putative biophysical mechanism for decoding temporal structure. These findings offer an alternative perspective on the relationship between movement preparation and generation by situating the correlates of movement initiation in the temporal features of activity in shared neural substrates. They also suggest a need to look beyond the instantaneous rate code at the single neuron or population level and consider the effects of short-term population history on neuronal communication and behaviour.SummarySensorimotor transformations are mediated by premotor brain networks where individual neurons represent sensory, cognitive, and movement-related information. Such multiplexing poses a conundrum - how does a decoder know precisely when to initiate a movement if its inputs are active at times when a movement is not desired (e.g., in response to sensory stimulation)? Here, we propose a novel hypothesis: movement is triggered not only by an increase in firing rate, but critically by a reliable temporal pattern in the population response. Laminar recordings in the macaque superior colliculus (SC), a midbrain hub of orienting control, and pseudo-population analyses in SC and cortical frontal eye fields (FEF) corroborated this hypothesis. Importantly, we used spatiotemporally patterned microstimulation to causally verify the importance of temporal structure and demonstrate its role in gating movement initiation. We also offer a spiking neuron model with dendritic integration as a putative mechanism to decode this temporal information. These findings offer new insights into the long-standing debate on movement generation and highlight the importance of short-term population history in neuronal communication and behavior.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3