PTM-Mamba: A PTM-Aware Protein Language Model with Bidirectional Gated Mamba Blocks

Author:

Peng Zhangzhi,Schussheim Benjamin,Chatterjee PranamORCID

Abstract

AbstractProteins serve as the workhorses of living organisms, orchestrating a wide array of vital functions. Post-translational modifications (PTMs) of their amino acids greatly influence the structural and functional diversity of different protein types and uphold proteostasis, allowing cells to swiftly respond to environmental changes and intricately regulate complex biological processes. To this point, efforts to model the complex features of proteins have involved the training of large and expressive protein language models (pLMs) such as ESM-2 and ProtT5, which accurately encode structural, functional, and physicochemical properties of input protein sequences. However, the over 200 million sequences that these pLMs were trained on merely scratch the surface of proteomic diversity, as they neither input nor account for the effects of PTMs. In this work, we fill this major gap in protein sequence modeling by introducing PTM tokens into the pLM training regime. We then leverage recent advancements in structured state space models (SSMs), specifically Mamba, which utilizes efficient hardware-aware primitives to overcome the quadratic time complexities of Transformers. After adding a comprehensive set of PTM tokens to the model vocabulary, we train bidirectional Mamba blocks whose outputs are fused with state-of-the-art ESM-2 embeddings via a novel gating mechanism. We demonstrate that our resultant PTM-aware pLM,PTM-Mamba, improves upon ESM-2’s performance on various PTM-specific tasks. PTM-Mamba is the first and only pLM that can uniquely input and represent both wild-type and PTM sequences, motivating downstream modeling and design applications specific to post-translationally modified proteins. To facilitate PTM-aware protein language modeling applications, we have made our model available at:https://huggingface.co/ChatterjeeLab/PTM-Mamba.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3