moPPIt:De NovoGeneration of Motif-Specific Binders with Protein Language Models
Author:
Chen Tong, Zhang Yinuo, Chatterjee PranamORCID
Abstract
AbstractThe ability to precisely target specific motifs on disease-related proteins, whether conserved epitopes on viral proteins, intrinsically disordered regions within transcription factors, or breakpoint junctions in fusion oncoproteins, is essential for modulating their function while minimizing off-target effects. Current methods struggle to achieve this specificity without reliable structural information. In this work, we introduce amotif-specificPPI targeting algorithm,moPPIt, forde novogeneration of motif-specific peptide binders from the target protein sequence alone. At the core of moPPIt is BindEvaluator, a transformer-based model that interpolates protein language model embeddings of two proteins via a series of multi-headed self-attention blocks, with a key focus on local motif features. Trained on over 510,000 annotated PPIs, BindEvaluator accurately predicts target binding sites given protein-protein sequence pairs with a test AUC > 0.94, improving to AUC > 0.96 when fine-tuned on peptide-protein pairs. By combining BindEvaluator with our PepMLM peptide generator and genetic algorithm-based optimization, moPPIt generates peptides that bind specifically to user-defined residues on target proteins. We demonstrate moPPIt’s efficacy in computationally designing binders to specific motifs, first on targets with known binding peptides and then extending to structured and disordered targets with no known binders. In total, moPPIt serves as a powerful tool for developing highly specific peptide therapeutics without relying on target structure or structure-dependent latent spaces.
Publisher
Cold Spring Harbor Laboratory
Reference31 articles.
1. Abbasian, M. H. , Mahmanzar, M. , Rahimian, K. , Mahdavi, B. , Tokhanbigli, S. , Moradi, B. , Sisakht, M. M. , and Deng, Y. (2023). Global landscape of sars-cov-2 mutations and conserved regions. Journal of Translational Medicine, 21(1). 2. Pepnn: a deep attention model for the identification of peptide binding sites;Communications biology,2022 3. Abramson, J. , Adler, J. , Dunger, J. , Evans, R. , Green, T. , Pritzel, A. , Ronneberger, O. , Willmore, L. , Ballard, A. J. , Bambrick, J. , Bodenstein, S. W. , Evans, D. A. , Hung, C.-C. , O’Neill, M. , Reiman, D. , Tunyasuvunakool, K. , Wu, Z. , Žemgulytė, A. , Arvaniti, E. , Beattie, C. , Bertolli, O. , Bridgland, A. , Cherepanov, A. , Congreve, M. , Cowen-Rivers, A. I. , Cowie, A. , Figurnov, M. , Fuchs, F. B. , Gladman, H. , Jain, R. , Khan, Y. A. , Low, C. M. R. , Perlin, K. , Potapenko, A. , Savy, P. , Singh, S. , Stecula, A. , Thillaisundaram, A. , Tong, C. , Yakneen, S. , Zhong, E. D. , Zielinski, M. , Žídek, A. , Bapst, V. , Kohli, P. , Jaderberg, M. , Hassabis, D. , and Jumper, J. M. (2024). Accurate structure prediction of biomolecular interactions with alphafold3. Nature. 4. Immunohistochemical detection of pax-foxo1 fusion proteins in alveolar rhabdomyosarcoma using breakpoint specific monoclonal antibodies;Modern Pathology,2021 5. Bhat, S. , Palepu, K. , Hong, L. , Mao, J. , Ye, T. , Iyer, R. , Zhao, L. , Chen, T. , Vincoff, S. , Watson, R. , Wang, T. , Srijay, D. , Kavirayuni, V. S. , Kholina, K. , Goel, S. , Vure, P. , Desphande, A. H. , Soderling, S. , DeLisa, M. , and Chatterjee, P. (2023). De novo design of peptide binders to conformationally diverse targets with contrastive language modeling. bioRxiv.
|
|