Overcoming the “feast or famine” effect: improved interaction testing in genome-wide association studies

Author:

Zhou Huanlin,McPeek Mary SaraORCID

Abstract

AbstractIn genetic association analysis of complex traits, detection of interaction (either GxG or GxE) can help to elucidate the genetic architecture and biological mechanisms underlying the trait. Detection of interaction in a genome-wide association study (GWAS) can be methodologically challenging for various reasons, including a high burden of multiple comparisons when testing for epistasis between all possible pairs of a set of genomewide variants, as well as heteroscedasticity effects occurring in the presence of GxG or GxE interaction. In this paper, we address the problem of an even more striking phenomenon that we call the “feast or famine” effect that occurs when testing interaction in a genomewide context. As we verify, even in a simplified setting in which there is no interaction at all (and so no heteroscedasticity), in a GWAS to detect GxG or GxE interaction with a fixed genetic variant or environmental factor, the distribution of the genome-wide p-values under the null hypothesis is not the i.i.d. uniform one that is commonly assumed. Using standard methods, even if all SNPs are independent, some GWASs will have systematically underinflated p-values (“feast”), and others will have systematically overinflated p-values (“famine”), which can lead to false detection of interaction, reduced power, inconsistent results across studies, and failure to replicate true signal. This startling phenomenon is specific to detection of interaction in a GWAS, and it may partly explain why such detection has so far proved challenging and difficult to replicate. We show theoretically that the key cause of this phenomenon is which variables are conditioned on in the analysis, and this suggests an approach to correct the problem by changing the way the conditioning is done. Using this insight, we have developed the TINGA method to adjust the interaction test statistics to make their p-values closer to uniform under the null hypothesis. In simulations we show that TINGA both controls type 1 error and improves power. TINGA allows for covariates and population structure through use of a linear mixed model and accounts for heteroscedasticity. We apply TINGA to detection of epistasis in a study of flowering time inArabidopsis thaliana.Author summaryTesting for interactions in GWAS can lead to insight into biological mechanisms, but poses greater challenges than ordinary genetic association GWAS. When testing for interaction in a GWAS setting with one fixed SNP or environmental variable, the standard test statistics may not have the expected statistical properties under the null hypothesis, which can lead to false detection of interaction, inconsistent results across studies, reduced power, and failure to replicate true signal. We propose the TINGA method to adjust the test statistics so that the null distribution of their p-values is closer to uniform. Through simulations and real data analysis, we illustrate the problems with the standard analysis and the improvement of our proposed method.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3