Leveraging uncertainty quantification to optimise CRISPR guide RNA selection

Author:

Schmitz CarlORCID,Bradford JacobORCID,Salomone RobertORCID,Perrin DimitriORCID

Abstract

CRISPR-based genome editing relies on guide RNA sequences to target specific regions of interest. A large number of methods have been developed to predict how efficient different guides are at inducing indels. As more experimental data becomes available, methods based on machine learning have become more prominent. Here, we explore whether quantifying the uncertainty around these predictions can be used to design better guide selection strategies. We demonstrate how using a deep ensemble approach achieves better performance than utilising a single model. This approach can also provide uncertainty quantification. This allows to design, for the first time, strategies that consider uncertainty in guide RNA selection. These strategies achieve precision over 91% and can identify suitable guides for more than 93% of genes in the mouse genome. Our deep ensemble model is available athttps://github.com/bmdslab/CRISPR_DeepEnsemble.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3