Secondary structure determines electron transport in peptides

Author:

Samajdar Rajarshi,Meigooni Moeen,Yang Hao,Li Jialing,Liu Xiaolin,Jackson Nicholas E.,Mosquera Martín A.,Tajkhorshid EmadORCID,Schroeder Charles M.

Abstract

AbstractProteins play a key role in biological electron transport, but the structure-function relationships governing the electronic properties of peptides are not fully understood. Despite recent progress, understanding the link between peptide conformational flexibility, hierarchical structures, and electron transport pathways has been challenging. Here, we use single-molecule experiments, molecular dynamics (MD) simulations, non-equilibrium Green’s function-density functional theory (NEGF-DFT) calculations, and unsupervised machine learning to understand the role of primary amino acid sequence and secondary structure on charge transport in peptides. Our results reveal a two-state molecular conductance behavior for peptides across several different amino acid sequences. MD simulations and Gaussian mixture modeling are used to show that this two-state molecular conductance behavior arises due to the conformational flexibility of peptide backbones, with a high-conductance state arising due to a more defined secondary structure (beta turn) and a low-conductance state occurring for extended peptide structures. Conformer selection for the peptide structures is rationalized using principal component analysis (PCA) of intramolecular hydrogen bonding distances along peptide backbones. Molecular conformations from MD simulations are used to model charge transport in NEGF-DFT calculations, and the results are in reasonably good agreement with experiments. Projected density of states (PDOS) calculations and molecular orbital visualizations are further used to understand the role of amino acid side chains on transport. Overall, our results show that secondary structure plays a key role in electron transport in peptides, which provides new avenues for understanding the electronic properties of longer peptides or proteins.Significance StatementElectron transport in proteins serves as a biological power line that fuels cellular activities such as respiration and photosynthesis. Within cells, proteins act as conduits, shuttling electrons through a series of reactions and pathways to generate proton gradients and to fuel ATP synthesis. Despite recent progress, the mechanisms underlying the flow of energy in protein complexes are not fully understood. Here, we study electron transport in peptides at the single-molecule level by combining experiments and molecular modeling. Our results reveal two distinct molecular sub-populations underlying electron transport that arise due to the flexibility of peptide backbones and the ability to fold into compact structures. This work provides a basis for understanding energy flow in larger proteins or biomolecular assemblies.

Publisher

Cold Spring Harbor Laboratory

Reference82 articles.

1. Biological Inorganic Chemistry. Structure and Reactivity;Angew. Chem. Intl. Ed,2007

2. Long-Range Electron Tunneling

3. Electronic Transport via Proteins;Adv. Mat,2014

4. Electron tunneling through proteins;Qtly. Rev. of Biophysics,2003

5. GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secondary structure determines electron transport in peptides;Proceedings of the National Academy of Sciences;2024-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3