Abstract
AbstractCulture-independent methods have contributed substantially to our understanding of global microbial diversity. Recently developed algorithms to construct whole genomes from environmental samples have further refined, corrected and revolutionized the tree of life. Here, we assembled draft metagenome-assembled genomes (MAGs) from environmental DNA extracted from two hot springs within an active volcanic ecosystem on the Kamchatka peninsula, Russia. This hydrothermal system has been intensively studied previously with regard to geochemistry, chemoautotrophy, microbial isolation, and microbial diversity. Using a shotgun metagenomics approach, we assembled population-level genomes of bacteria and archaea from two pools using DNA that had previously been characterized via 16S rRNA gene clone libraries. We recovered 36 MAGs, 29 of medium to high quality, and placed them in the context of the current microbial tree of life. We highlight MAGs representing previously underrepresented archaeal phyla (Korarchaeota, BathyarchaeotaandAciduliprofundum) and one potentially new species within the bacterial genusSulfurihydrogenibium. Putative functions in both pools were compared and are discussed in the context of their diverging geochemistry. This study can be considered complementary to foregoing studies in the same ecosystem as it adds more comprehensive information about phylogenetic diversity and functional potential within this highly selective habitat.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献