Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial Hot Springs

Author:

Pearson Ann1,Pi Yundan123,Zhao Weidong3,Li WenJun4,Li Yiliang3,Inskeep William5,Perevalova Anna6,Romanek Christopher3,Li Shuguang2,Zhang Chuanlun L.3

Affiliation:

1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

2. School of Earth and Space Sciences, the University of Sciences and Technology of China, Hefei, China

3. Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina

4. Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, China

5. Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana

6. Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia

Abstract

ABSTRACT Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87°C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m / z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX 86 paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference62 articles.

1. Biddle, J. F., J. S. Lipp, M. A. Lever, K. G. Lloyd, K. B. Sorensen, R. Anderson, H. K. Fredricks, M. Elvert, T. J. Kelly, D. P. Schrag, M. L. Sogin, J. E. Brenchley, A. Teske, C. H. House, and K. U. Hinrichs. 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl. Acad. Sci. USA103:3846-3851.

2. A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION

3. In Vitro Study of Lipid Biosynthesis in an Anaerobically Methane-Oxidizing Microbial Mat

4. Bonch-Osmolovskaya, E. A., A. I. Slesarev, M. L. Miroshnichenko, T. P. Svetlichnaya, and V. A. Alekseev. 1988. Characteristics of Desulfurococcus amylolyticus n. sp.—a new extremely thermophilic archaebacterium isolated from thermal springs of Kamchatka and Kunashir Island. Mikrobiologiya57:94-101. (In Russian.)

5. Bonch-Osmolovskaya, E. A., M. L. Miroshnichenko, N. A. Kostrikina, N. A. Chernyh, and G. A. Zavarzin. 1990. Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Arch. Microbiol.154:556-559.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3