Author:
Holland Dominic,Frei Oleksandr,Desikan Rahul,Fan Chun-Chieh,Shadrin Alexey A.,Smeland Olav B.,Sundar V. S.,Thompson Paul,Andreassen Ole A.,Dale Anders M.
Abstract
AbstractOf signal interest in the genetics of human traits is estimating their polygenicity (the proportion of causally associated single nucleotide polymorphisms (SNPs)) and the discoverability (or effect size variance) of the causal SNPs. Narrow-sense heritability is proportional to the product of these quantities. We present a basic model, using detailed linkage disequilibrium structure from an extensive reference panel, to estimate these quantities from genome-wide association studies (GWAS) summary statistics for SNPs with minor allele frequency >1%. We apply the model to diverse phenotypes and validate the implementation with simulations. We find model polygenicities ranging from ≃ 2 × 10−5 to ≃ 4 × 10−3, with discoverabilities similarly ranging over two orders of magnitude. A power analysis allows us to estimate the proportions of phenotypic variance explained additively by causal SNPs at current sample sizes, and map out sample sizes required to explain larger portions of additive SNP heritability. The model also allows for estimating residual inflation.
Publisher
Cold Spring Harbor Laboratory