Abstract
ABSTRACTRegional brain morphology has a complex genetic architecture, consisting of many common polymorphisms with small individual effects, which has proven challenging for genome-wide association studies to date, despite its high heritability1,2. Given the distributed nature of the genetic signal across brain regions, joint analysis of regional morphology measures in a multivariate statistical framework provides a way to enhance discovery of genetic variants with current sample sizes. While several multivariate approaches to GWAS have been put forward over the past years3–5, none are optimally suited for complex, large-scale data. Here, we applied the Multivariate Omnibus Statistical Test (MOSTest), with an efficient computational design enabling rapid and reliable permutation-based inference, to 171 subcortical and cortical brain morphology measures from 26,502 participants of the UK Biobank (mean age 55.5 years, 52.0% female). At the conventional genome-wide significance threshold of α=5×10−8, MOSTest identifies 347 genetic loci associated with regional brain morphology, more than any previous study, improving upon the discovery of established GWAS approaches more than threefold. Our findings implicate more than 5% of all protein-coding genes and provide evidence for gene sets involved in neuron development and differentiation. As such, MOSTest, which we have made publicly available, enhances our understanding of the genetic determinants of regional brain morphology.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献