Universal trends of post-duplication evolution revealed by the genomes of 13 Paramecium species sharing an ancestral whole-genome duplication

Author:

Gout Jean-Francois,Johri Parul,Arnaiz Olivier,Doak Thomas G.,Bhullar Simran,Couloux Arnaud,Guérin Fréderic,Malinsky Sophie,Sperling Linda,Labadie Karine,Meyer Eric,Duharcourt Sandra,Lynch Michael

Abstract

AbstractWhole-Genome Duplications (WGDs) have shaped the gene repertoire of many eukaryotic lineages. The redundancy created by WGDs typically results in a phase of massive gene loss. However, some WGD-derived paralogs are maintained over long evolutionary periods and the relative contributions of different selective pressures to their maintenance is still debated. Previous studies have revealed a history of three successive WGDs in the lineage of the ciliate Paramecium tetraurelia and two of its sister species from the P. aurelia complex. Here, we report the genome sequence and analysis of 10 additional P. aurelia species and one additional outgroup, allowing us to track post-WGD evolution in 13 species that share a common ancestral WGD. We found similar biases in gene retention compatible with dosage constraints playing a major role opposing post-WGD gene loss across all 13 species. Interestingly we found that post-WGD gene loss was slower in Paramecium than in other species having experienced genome duplication, suggesting that the selective pressures against post-WGD gene loss are especially strong in Paramecium. We also report a lack of recent segmental duplications in Paramecium, which we interpret as additional evidence for strong selective pressures against individual genes dosage changes. Finally, we hope that this exceptional dataset of 13 species sharing an ancestral WGD and two closely related outgroup species will be a useful resource for future studies and will help establish Paramecium as a major model organism in the study of post-WGD evolution.

Publisher

Cold Spring Harbor Laboratory

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3