Estimation of Non-null SNP Effect Size Distributions Enables the Detection of Enriched Genes Underlying Complex Traits

Author:

Cheng WeiORCID,Ramachandran SohiniORCID,Crawford LorinORCID

Abstract

AbstractTraditional univariate genome-wide association studies generate false positives and negatives due to difficulties distinguishing associated variants from variants with spurious nonzero effects that do not directly influence the trait. Recent efforts have been directed at identifying genes or signaling pathways enriched for mutations in quantitative traits or case-control studies, but these can be computationally costly and hampered by strict model assumptions. Here, we present gene-ε, a new approach for identifying statistical associations between sets of variants and quantitative traits. Our key insight is that enrichment studies on the gene-level are improved when we reformulate the genome-wide SNP-level null hypothesis to identify spurious small-to-intermediate SNP effects and classify them as non-causal. gene-ε efficiently identifies enriched genes under a variety of simulated genetic architectures, achieving greater than a 90% true positive rate at 1% false positive rate for polygenic traits. Lastly, we apply gene-ε to summary statistics derived from six quantitative traits using European-ancestry individuals in the UK Biobank, and identify enriched genes that are in biologically relevant pathways.Author SummaryEnrichment tests augment the standard univariate genome-wide association (GWA) framework by identifying groups of biologically interacting mutations that are enriched for associations with a trait of interest, beyond what is expected by chance. These analyses model local linkage disequilibrium (LD), allow many different mutations to be disease-causing across patients, and generate biologically interpretable hypotheses for disease mechanisms. However, existing enrichment analyses are hampered by high computational costs, and rely on GWA summary statistics despite the high false positive rate of the standard univariate GWA framework. Here, we present the gene-level association framework gene-ε (pronounced “genie”), an empirical Bayesian approach for identifying statistical associations between sets of mutations and quantitative traits. The central innovation of gene-ε is reformulating the GWA null model to distinguish between (i) mutations that are statistically associated with the disease but are unlikely to directly influence it, and (ii) mutations that are most strongly associated with a disease of interest. We find that, with our reformulated SNP-level null hypothesis, our gene-level enrichment model outperforms existing enrichment methods in simulation studies and scales well for application to emerging biobank datasets. We apply gene-ε to six quantitative traits in the UK Biobank and recover novel and functionally validated gene-level associations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3