Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotrophParacoccus thiocyanatusSST

Author:

Rameez Moidu Jameela,Pyne Prosenjit,Mandal Subhrangshu,Chatterjee Sumit,Alam Masrure,Bhattacharya Sabyasachi,Mondal Nibendu,Sarkar Jagannath,Ghosh Wriddhiman

Abstract

AbstractChemolithotrophic bacteria oxidize various sulfur species for energy and electrons, thereby operationalizing biogeochemical sulfur cycles in nature. The best-studied pathway of bacterial sulfur-chemolithotrophy, involving direct oxidation of thiosulfate to sulfate (without any free intermediate) by the SoxXAYZBCD multienzyme system, is apparently the exclusive mechanism of thiosulfate oxidation in facultatively chemolithotrophic alphaproteobacteria. Here we explore the molecular mechanisms of sulfur oxidation in the thiosulfate- and tetrathionate-oxidizing alphaproteobacteriumParacoccus thiocyanatusSST, and compare them with the prototypical Sox process characterized inParacoccus pantotrophus. Our results revealed the unique case where, an alphaproteobacterium has Sox as its secondary pathway of thiosulfate oxidation, converting ∼10% of the thiosulfate supplied whilst 90% of the substrate is oxidized via a Tetrathionate-Intermediate pathway. Knock-out mutation, followed by the study of sulfur oxidation kinetics, showed that thiosulfate-to-tetrathionate conversion, in SST, is catalyzed by a thiosulfate dehydrogenase (TsdA) homolog that has far-higher substrate-affinity than the Sox system of this bacterium, which, remarkably, is also less efficient than theP. pantotrophusSox.soxB-deletion in SST abolished sulfate-formation from thiosulfate/tetrathionate while thiosulfate-to-tetrathionate conversion remained unperturbed. Physiological studies revealed the involvement of glutathione in SST tetrathionate oxidation. However, zero impact of the knock-out of a thiol dehydrotransferase (thdT) homolog, together with no production of sulfite as an intermediate, indicated that tetrathionate oxidation in SST is mechanistically novel, and distinct from its betaproteobacterial counterpart mediated by glutathione, ThdT, SoxBCD and sulfite:acceptor oxidoreductase. All the present findings collectively highlight extensive functional diversification of sulfur-oxidizing enzymes across phylogenetically close, as well as distant, bacteria.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3