Sequence-to-sequence translation from mass spectra to peptides with a transformer model

Author:

Yilmaz Melih,Fondrie William E.,Bittremieux WoutORCID,Nelson Rowan,Ananth Varun,Oh Sewoong,Noble William StaffordORCID

Abstract

AbstractA fundamental challenge for any mass spectrometry-based proteomics experiment is the identification of the peptide that generated each acquired tandem mass spectrum. Although approaches that leverage known peptide sequence databases are widely used and effective for well-characterized model organisms, such methods cannot detect unexpected peptides and can be impractical or impossible to apply in some settings. Thus, the ability to assign peptide sequences to the acquired tandem mass spectra without prior information—de novopeptide sequencing—is valuable for gaining biological insights for tasks including antibody sequencing, immunopeptidomics, and metaproteomics. Although many methods have been developed to address thisde novosequencing problem, it remains an outstanding challenge, in part due to the difficulty of modeling the irregular data structure of tandem mass spectra. Here, we describe Casanovo, a machine learning model that uses a transformer neural network architecture to translate the sequence of peaks in a tandem mass spectrum into the sequence of amino acids that comprise the generating peptide. We train a Casanovo model from 30 million labeled spectra and demonstrate that the model outperforms several state-of-the-art methods on a cross-species benchmark dataset. We also develop a version of Casanovo that is fine-tuned for non-enzymatic peptides. Finally, we demonstrate that Casanovo’s superior performance improves the analysis of immunopeptideomics and metaproteomics experiments and allows us to delve deeper into the dark proteome.

Publisher

Cold Spring Harbor Laboratory

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3