Genetic mapping reveals new loci and alleles for flowering time and plant height using the double round-robin population of barley

Author:

Cosenza FrancescoORCID,Shrestha AsisORCID,Van Inghelandt Delphine,Casale Federico A.,Wu Po-Ya,Weisweiler Marius,Li Jinquan,Wespel Franziska,Stich Benjamin

Abstract

ABSTRACTFlowering time and plant height are two critical determinants of yield potential in barley (Hordeum vulgare). Although their role as key traits, a comprehensive understanding of the genetic complexity of flowering time and plant height regulation in barley is still lacking. Through a double round-robin population originated from the crossings of 23 diverse parental inbred lines, we aimed to determine the variance components in the regulation of flowering time and plant height in barley as well as identify new genetic variants by single and multi-population quantitative trait loci (QTL) analyses and allele mining. Despite similar genotypic variance, we observed higher environmental variance components for plant height than flowering time. Furthermore, we detected one new QTL for flowering time and two new QTL for plant height. Finally, we identified a new functional allelic variant of the main regulatory genePpd-H1. Our results show that the genetic architecture of flowering time and plant height might be more complex than reported earlier and that a number of undetected, small effect or low frequency, genetic variants underlie the control of these two traits.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3