Affiliation:
1. Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
2. Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
Abstract
AbstractFlowering time is a complex trait and has a key role in crop yield and adaptation to environmental stressors such as heat and drought. This study aimed to better understand the interconnected dynamics of epistasis and environment and look for novel regulators. We investigated 534 spring barley MAGIC DH lines for flowering time at various environments. Analysis of quantitative trait loci (QTLs), epistatic interactions, QTL × environment (Q×E) interactions, and epistasis × environment (E×E) interactions were performed with single SNP and haplotype approaches. In total, 18 QTLs and 2420 epistatic interactions were detected, including intervals harboring major genes such as Ppd-H1, Vrn-H1, Vrn-H3, and denso/sdw1. Epistatic interactions found in field and semi-controlled conditions were distinctive. Q×E and E×E interactions revealed that temperature influenced flowering time by triggering different interactions between known and newly detected regulators. A novel flowering-delaying QTL allele was identified on chromosome 1H (named ‘HvHeading’) and was shown to be engaged in epistatic and environment interactions. Results suggest that investigating epistasis, environment, and their interactions, rather than only single QTLs, is an effective approach for detecting novel regulators. We assume that barley can adapt flowering time to the environment via alternative routes within the pathway.
Funder
German Research Foundation
Publisher
Oxford University Press (OUP)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献