The proteomic landscape of synaptic diversity across brain regions and cell types

Author:

van Oostrum MarcORCID,Blok Thomas,Giandomenico Stefano L.ORCID,Dieck Susanne tomORCID,Tushev GeorgiORCID,Fürst Nicole,Langer JulianORCID,Schuman Erin M.ORCID

Abstract

AbstractBrain function relies on communication via neuronal synapses. Neurons build and diversify synaptic contacts using different protein combinations that define the specificity, function and plasticity potential of synapses. More than a thousand proteins have been globally identified in both pre- and postsynaptic compartments, providing substantial potential for synaptic diversity. While there is ample evidence of diverse synaptic structures, states or functional properties, the diversity of the underlying individual synaptic proteomes remains largely unexplored. Here we used 7 different Cre-driver mouse lines crossed with a floxed mouse line in which the presynaptic terminals were fluorescently labeled (SypTOM) to identify the proteomes that underlie synaptic diversity. We combined microdissection of 5 different brain regions with fluorescent-activated synaptosome sorting to isolate and analyze using quantitative mass spectrometry 18 types of synapses and their underlying synaptic proteomes. We discovered ~1’800 unique synapse type-enriched proteins and allocated thousands of proteins to different types of synapses. We identify commonly shared synaptic protein modules and highlight the hotspots for proteome specialization. A protein-protein correlation network classifies proteins into modules and their association with synaptic traits reveals synaptic protein communities that correlate with either neurotransmitter glutamate or GABA. Finally, we reveal specializations and commonalities of the striatal dopaminergic proteome and outline the proteome diversity of synapses formed by parvalbumin, somatostatin and vasoactive intestinal peptide-expressing cortical interneuron subtypes, highlighting proteome signatures that relate to their functional properties. This study opens the door for molecular systems-biology analysis of synapses and provides a framework to integrate proteomic information for synapse subtypes of interest with cellular or circuit-level experiments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3