scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets

Author:

Andreatta Massimo12ORCID,Berenstein Ariel J3ORCID,Carmona Santiago J12ORCID

Affiliation:

1. Ludwig Institute for Cancer Research, Lausanne Branch, and Department of Oncology, CHUV and University of Lausanne , 1011 Lausanne, Switzerland

2. Swiss Institute of Bioinformatics , 1015 Lausanne, Switzerland

3. Laboratorio de Biología Molecular, División Patología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA , Buenos Aires C1425EFD, Argentina

Abstract

Abstract Summary A common bioinformatics task in single-cell data analysis is to purify a cell type or cell population of interest from heterogeneous datasets. Here, we present scGate, an algorithm that automatizes marker-based purification of specific cell populations, without requiring training data or reference gene expression profiles. scGate purifies a cell population of interest using a set of markers organized in a hierarchical structure, akin to gating strategies employed in flow cytometry. scGate outperforms state-of-the-art single-cell classifiers and it can be applied to multiple modalities of single-cell data (e.g. RNA-seq, ATAC-seq, CITE-seq). scGate is implemented as an R package and integrated with the Seurat framework, providing an intuitive tool to isolate cell populations of interest from heterogeneous single-cell datasets. Availability and implementation scGate is available as an R package at https://github.com/carmonalab/scGate (https://doi.org/10.5281/zenodo.6202614). Several reproducible workflows describing the main functions and usage of the package on different single-cell modalities, as well as the code to reproduce the benchmark, can be found at https://github.com/carmonalab/scGate.demo (https://doi.org/10.5281/zenodo.6202585) and https://github.com/carmonalab/scGate.benchmark. Test data are available at https://doi.org/10.6084/m9.figshare.16826071. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

Swiss National Science Foundation (SNF) Ambizione

National Scientific and Technical Research Council of Argentina

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference13 articles.

1. A comparison of automatic cell identification methods for single-cell RNA sequencing data;Abdelaal;Genome Biol,2019

2. UCell: robust and scalable single-cell gene signature scoring;Andreatta;Comput. Struct. Biotechnol. J,2021

3. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage;Aran;Nat. Immunol,2019

4. Integrated analysis of multimodal single-cell data;Hao;Cell,2021

5. Evaluation of cell type annotation R packages on single-cell RNA-seq data;Huang;Genomics Proteomics Bioinformatics,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3