Deep learning-based Segmentation of Multi-site Disease in Ovarian Cancer

Author:

Buddenkotte ThomasORCID,Rundo LeonardoORCID,Woitek RamonaORCID,Sanchez Lorena EscuderoORCID,Beer LucianORCID,Crispin-Ortuzar MireiaORCID,Etmann Christian,Mukherjee Subhadip,Bura VladORCID,McCague CathalORCID,Sahin Hilal,Pintican RoxanaORCID,Zerunian MartaORCID,Allajbeu Iris,Singh NaveenaORCID,Anju SahdevORCID,Havrilesky LauraORCID,Cohn David E.,Bateman Nicholas W.,Conrads Thomas P.ORCID,Darcy Kathleen M.ORCID,Maxwell G. LarryORCID,Freymann John B.,Öktem Ozan,Brenton James D.ORCID,Sala EvisORCID,Schönlieb Carola-Bibiane

Abstract

AbstractPurposeTo determine if pelvic/ovarian and omental lesions of ovarian cancer can be reliably segmented on computed tomography (CT) using fully automated deep learning-based methods.Materials and MethodsA deep learning model for the two most common disease sites of high grade serous ovarian cancer lesions (pelvis/ovaries and omentum) was developed and compared against the well-established “no-new-Net” (nnU-Net) framework and unrevised trainee radiologist segmentations. A total of 451 pre-treatment and post neoadjuvant chemotherapy (NACT) CT scans collected from four different institutions were used for training (n=276), hyper-parameter tuning (n=104) and testing (n=71) of the methods. The performance was evaluated using the Dice similarity coefficient (DSC) and compared using a Wilcoxon test on paired resultsResultsOur model outperforms the nnU-Net framework by a significant margin for both disease (validation: p=1×10-4,1.5×10-6, test: p=0.004, 0.005) and it does not perform significantly different from a trainee radiologist for the pelvic/ovarian lesions (p=0.392). On an independent test set (n=71), the model achieves a performance of 72±19 mean DSC for the pelvic/ovarian and 64±24 for the omental lesions.ConclusionAutomated ovarian cancer segmentation on CT using deep neural networks is feasible and achieves performance close to a trainee-level radiologist for pelvic/ovarian lesions.SummaryDeep learning-based models were used to assess whether fully automated segmentation is feasible for the main two disease sites in high grade serous ovarian cancer.Key PointsFirst automated approach for pelvic/ovarian and omental ovarian cancer lesion segmentation on CT images.Automated segmentation of ovarian cancer lesions can be comparable with manual segmentation of trainee radiologists with three years of experience in oncological and gynecological imaging.Careful hyper-parameter tuning can provide models significantly outperforming strong state-of-the-art baselines.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3