Identification and evaluation of small-molecule inhibitors against the dNTPase SAMHD1viaa comprehensive screening funnel

Author:

Zhang Si MinORCID,Paulin Cynthia B.J.,Michel Maurice,Marttila Petra,Yagüe-Capilla Miriam,Bwanika Henri Colyn,Shu Huazhang,Vekatram Rajagopal Papagudi,Wiita Elisée,Jemth Ann-Sofie,Almlöf Ingrid,Loseva Olga,Ortis Florian,Dirks Christopher,Koolmeister Tobias,Linde Erika,Lee Sun,Llona-Minguez Sabin,Haraldsson Martin,Strömberg Kia,Homan Evert J.,Scobie Martin,Lundbäck Thomas,Helleday Thomas,Rudd Sean G.ORCID

Abstract

AbstractSterile alpha motif and histidine-aspartic acid domain containing protein-1 (SAMHD1) is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase central to cellular nucleotide pool homeostasis. Recent literature has also demonstrated how SAMHD1 can detoxify chemotherapy metabolites thereby controlling their clinical responses. To further understand SAMHD1 biology and to investigate the potential of targeting this enzyme as a neoadjuvant to existing chemotherapies we set out to discover selective small molecule-based inhibitors of SAMHD1. Here we report a discovery pipeline encompassing a biochemical screening campaign and a set of complementary biochemical, biophysical, and cell-based readouts for further characterisation of the screen output. The identified hit compound TH6342 and its analogues, accompanied by their inactive negative control analogue TH7126, demonstrated specific, low μM potency in inhibiting the hydrolysis of both natural substrates and nucleotide analogue therapeutics, shown using complementary enzyme-coupled and direct enzymatic activity assays. Their mode of inhibition was subsequently detailed by coupling kinetic studies with thermal shift assays, where TH6342 and analogues were shown to engage with pre-tetrameric SAMHD1 and deter the oligomerisation and allosteric activation of SAMHD1 without occupying nucleotide binding pockets. We further outline the development and application of multiple cellular assays for assessing cellular target engagement and associated functional effects, including CETSA and an in-cell dNTP hydrolase activity assay, which highlighted future optimisation strategies of this chemotype. In summary, with a novel mode of inhibition, TH6342 and analogues broaden the set of tool compounds available in deciphering SAMHD1 enzymology and functions, and furthermore, the discovery pipeline reported herein represents a thorough framework for future SAMHD1 inhibitor development.Abstract Figure

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3