Abstract
AbstractPTEN dysfunction, caused by loss of lipid phosphatase activity or deletion, promotes pathologies, cancer, benign tumors, and neurodevelopmental disorders (NDDs). Despite efforts, exactly how the mutations trigger distinct phenotypic outcomes, cancer or NDD, has been puzzling. It has also been unclear how to distinguish between mutations harbored by isoforms, are they cancer or NDDs-related. Here we address both. We demonstrate that PTEN mutations differentially allosterically bias P-loop dynamics and its connection to the catalytic site, affecting catalytic activity. NDD-related mutations are likely to sample conformations present in the wild-type, while sampled conformations sheltering cancer-related hotspots favor catalysis-prone conformations, suggesting that NDD mutations are weaker. Analysis of isoform expression data indicates that if the transcript has NDD-related mutations, alone or in combination with cancer hotspots, there is high prenatal expression. If no mutations within the measured days, low expression levels. Cancer mutations promote stronger signaling and cell proliferation; NDDs’ are weaker, influencing brain cell differentiation. Further, exon 5 is impacted by NDD or non-NDD mutations, while exon 7 is exclusively impacted by NDD mutations. Our comprehensive conformational and genomic analysis helps discover how same allele mutations can foster different clinical manifestations and uncovers correlations of splicing isoform expression to life expectancy.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献