Genomic Landscape of Patients with GermlineRUNX1Variants and Familial Platelet Disorder with Myeloid Malignancy

Author:

Yu KaiORCID,Deuitch NatalieORCID,Merguerian Matthew,Cunningham Lea,Davis Joie,Bresciani Erica,Diemer Jamie,Andrews Elizabeth,Young Alice,Donovan Frank,Sood Raman,Craft Kathleen,Chong Shawn,Chandrasekharappa Settara,Mullikin JimORCID,Liu Paul P.

Abstract

AbstractGermlineRUNX1mutations lead to familial platelet disorder with associated myeloid malignancies (FPDMM), which is characterized by thrombocytopenia and a life-long risk (35-45%) of hematological malignancies. We recently launched a longitudinal natural history study for patients with FPDMM at the NIH Clinical Center. Among 29 families with research genomic data, 28 different germlineRUNX1variants were detected. Besides missense mutations enriched in Runt homology domain and loss-of-function mutations distributed throughout the gene, splice-region mutations and large deletions were detected in 6 and 7 families, respectively. In 24 of 54 (44.4%) non-malignant patients, somatic mutations were detected in at least one of the clonal hematopoiesis of indeterminate potential (CHIP) genes or acute myeloid leukemia (AML) driver genes.BCORwas the most frequently mutated gene (in 9 patients), and multipleBCORmutations were identified in 4 patients. Mutations in 7 other CHIP or AML driver genes (DNMT3A, TET2, NRAS, SETBP1, SF3B1, KMT2C, andLRP1B) were also found in more than one non-malignant patient. Moreover, three unrelated patients (one with myeloid malignancy) carried somatic mutations inNFE2, which regulates erythroid and megakaryocytic differentiation. Sequential sequencing data from 19 patients demonstrated dynamic changes of somatic mutations over time, and stable clones were more frequently found in elderly patients. In summary, there are diverse types of germlineRUNX1mutations and high frequency of somatic mutations related to clonal hematopoiesis in patients with FPDMM. Monitoring dynamic changes of somatic mutations prospectively will benefit patients’ clinical management and reveal mechanisms for progression to myeloid malignancies.Key PointsComprehensive genomic profile of patients with FPDMM with germlineRUNX1mutations.Rising clonal hematopoiesis related secondary mutations that may lead to myeloid malignancies.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3