CONSTANS alters the circadian clock inArabidopsis thaliana

Author:

de los Reyes Pedro,Romero-Campero Francisco JORCID,Gao He,Serrano-Bueno Gloria,Romero Jose M,Valverde FedericoORCID

Abstract

AbstractPlants are sessile organisms that have acquired highly plastic developmental strategies to adapt to the environment. Among these processes, the floral transition is essential to ensure reproductive success and is finely regulated by several internal and external genetic networks. The photoperiodic pathway, which controls the plant response to day length, is one of the most important pathways controlling flowering. InArabidopsisphotoperiodic flowering,CONSTANS(CO) is the central gene activating the expression of the florigenFLOWERING LOCUS T(FT)in the leaves at the end of a long day.COexpression is strongly regulated by the circadian clock. However, to date, no evidence has been reported regarding a feedback loop from the photoperiod pathway back to the circadian clock. Using transcriptional networks, we have identified relevant network motifs regulating the interplay between the circadian clock and the photoperiod pathway. Gene expression, chromatin immunoprecipitation experiments and phenotypic analysis allowed us to elucidate the role of CO over the circadian clock. Plants with alteredCOexpression showed a different internal clock period, measured by daily rhythmic movements in the leaves. We show that CO is able to activate key genes related to the circadian clock, such asCCA1,LHY,PRR5andGI,at the end of a long day by binding to specific sites on their promoters. Moreover, a significant number of PRR5 repressed target genes are upregulated by CO, and this could explain the phase transition promoted by CO. The CO-PRR5 complex interacts with the bZIP transcription factor HY5 and helps to localize the complex in the promoters of clock genes. Our results indicate that there may be a feedback loop in which CO communicates back to the circadian clock, feeding seasonal information to the circadian system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3