Author:
Stoddard Madison,Yuan Lin,Sarkar Sharanya,van Egeren Debra,Mangalaganesh Shruthi,Nolan Ryan P.,Rogers Michael S.,Hather Greg,White Laura F.,Chakravarty Arijit
Abstract
AbstractWhile the rapid deployment of SARS-CoV-2 vaccines had a significant impact on the ongoing COVID-19 pandemic, rapid viral immune evasion and waning neutralizing antibody titers have degraded vaccine efficacy. Nevertheless, vaccine manufacturers and public health authorities have a number of levers at their disposal to maximize the benefits of vaccination. Here, we use an agent-based modeling framework coupled with the outputs of a population pharmacokinetic model to examine the impact of boosting frequency and durability of vaccinal response on vaccine efficacy. Our work suggests that repeated dosing at frequent intervals (multiple times a year) may offset the degradation of vaccine efficacy, preserving their utility in managing the ongoing pandemic. Our work relies on assumptions about antibody accumulation and the tolerability of repeated vaccine doses. Given the practical significance of potential improvements in vaccinal utility, clinical research to better understand the effects of repeated vaccination would be highly impactful. These findings are particularly relevant as public health authorities worldwide seek to reduce the frequency of boosters to once a year or less. Our work suggests practical recommendations for vaccine manufacturers and public health authorities and draws attention to the possibility that better outcomes for SARS-CoV-2 public health remain within reach.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献