Single fluorogen imaging reveals distinct environmental and structural features of biomolecular condensates

Author:

Wu TingtingORCID,King Matthew R.ORCID,Farag Mina,Pappu Rohit V.ORCID,Lew Matthew D.ORCID

Abstract

AbstractRecent computations suggest that biomolecular condensates that form via macromolecular phase separation are network fluids featuring spatially inhomogeneous organization of the underlying molecules. Computations also point to unique conformations of molecules at condensate interfaces. Here, we test these predictions using high-resolution structural characterizations of condensates formed by intrinsically disordered prion-like low complexity domains (PLCDs). We leveraged the localization and orientational preferences of freely diffusing fluorogens and the solvatochromic effect whereby specific fluorogens are turned on in response to the physico-chemical properties of condensate microenvironments to facilitate single-molecule tracking and super-resolution imaging. We deployed three different fluorogens to probe internal microenvironments and molecular organization of PLCD condensates. The spatiotemporal resolution and environmental sensitivity afforded by single-fluorogen imaging shows that the internal environments of condensates are more hydrophobic than coexisting dilute phases. Molecules within condensates are organized in a spatially inhomogeneous manner featuring slow-moving nanoscale molecular clusters or hubs that coexist with fast-moving molecules. Finally, molecules at interfaces of condensates are found to have distinct orientational preferences when compared to the interiors. Our findings, which affirm computational predictions, help provide a structural basis for condensate viscoelasticity and dispel the notion of protein condensates being isotropic liquids defined by uniform internal densities.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3