Exploring the design space of recombinase logic circuits.

Author:

Guiziou SarahORCID,Perution-Kihli Guillaume,Ulliana Federico,Leclere Michel,Bonnet JeromeORCID

Abstract

Logic circuits operating in living cells are generally built by mimicking electronic layouts, and scale-up is accomplished using additional layers of elementary logic gates like NOT and NOR gates. Recombinase-based logic, in which logic is implemented using DNA inversion or excision, allows for highly efficient, compact and single-layer design architectures. However, recombinase logic architectures depart from electronic design principles, and gate design performed empirically is challenging for an increasing number of inputs. Here we used a combinatorial approach to explore the design space of recombinase logic devices. We generated combinations and permutations of recombination sites, genes, and regulatory elements, for a total of ~19 million designs supporting the implementation of all 2- and 3-input logic functions and up to 92% of 4-input logic functions. We estimated the influence of different design constraints on the number of executable functions, and found that the use of DNA inversion and transcriptional terminators were key factors to implement the vast majority of logic functions. We provide a user-friendly interface, called RECOMBINATOR (http://recombinator.lirmm.fr/index.php), that enable users to navigate the design space of recombinase-based logic, find architectures implementing a specific logic function and sort them according to various biological criteria. Finally, we define a set of 16 architectures from which all 256 3-input logic functions can be derived. This work provides a theoretical foundation for the systematic exploration and design of single-layer recombinase logic devices.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Foundations for engineering biology

2. Chang, H.-J. ; Voyvodic, P. L. ; Zuniga, A. ; Bonnet, J. Microbially Derived Biosensors for Diagnosis, Monitoring and Epidemiology. Microbial biotechnology 2017. https://doi.org/10.1111/1751-7915.12791.

3. Principles of genetic circuit design

4. Genetic circuit design automation

5. Macia, J. ; Manzoni, R. ; Conde, N. ; Urrios, A. ; de Nadal, E. ; Solé, R. ; Posas, F. Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia. PLoS Comput. Biol. 2016, 12 (2), e1004685.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3