Whole-brain, gray and white matter time-locked functional signal changes with simple tasks and model-free analysis

Author:

Schilling Kurt GORCID,Li MuweiORCID,Rheault Francois,Gao YuruiORCID,Cai LeonORCID,Zhao Yu,Xu Lyuan,Ding ZhaohuaORCID,Anderson Adam W,Landman Bennett A,Gore John CORCID

Abstract

AbstractRecent studies have revealed the production of time-locked blood oxygenation-level dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to a task, challenging the idea of sparse and localized brain functions, and highlighting the pervasiveness of potential false negative fMRI findings. In these studies, ‘whole-brain’ refers to gray matter regions only, which is the only tissue traditionally studied with fMRI. However, recent reports have also demonstrated reliable detection and analyses of BOLD signals in white matter which have been largely ignored in previous reports. Here, using model-free analysis and simple tasks, we investigate BOLD signal changes in both white and gray matters. We aimed to evaluate whether white matter also displays time-locked BOLD signals across all structural pathways in response to a stimulus. We find that both white and gray matter show time-locked activations across the whole-brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing very different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that the whole brain, including both white and gray matter, show time-locked activation to multiple stimuli, not only challenging the idea of sparse functional localization, but also the prevailing wisdom of treating white matter BOLD signals as artefacts to be removed.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3