Alteration of the large-scale white-matter functional networks in autism spectrum disorder

Author:

Chen Kai1,Zhuang Wenwen1,Zhang Yanfang2,Yin Shunjie1,Liu Yinghua1,Chen Yuan1,Kang Xiaodong3,Ma Hailin4,Zhang Tao1

Affiliation:

1. Xihua University Mental Health Education Center and School of Big Health Management, , Jinniu District, Chengdu, Sichuan , China

2. Southern Medical University Department of Ultrasonic Medicine, Baiyun Branch, Nanfang Hospital, , 1838 Guangzhou Avenue North, Baiyun District, Guangzhou City, Guangdong Province , China

3. Chengdu University of TCM The Department of Sichuan 81 Rehabilitation Center, , No. 81 Bayi Road, Yongning Street, Wenjiang District, Chengdu City 610075 , China

4. Tibet University Plateau Brain Science Research Center, , 10 Zangda East Road, Lhasa City 510631 , China

Abstract

Abstract Autism spectrum disorder is a neurodevelopmental disorder whose core deficit is social dysfunction. Previous studies have indicated that structural changes in white matter are associated with autism spectrum disorder. However, few studies have explored the alteration of the large-scale white-matter functional networks in autism spectrum disorder. Here, we identified ten white-matter functional networks on resting-state functional magnetic resonance imaging data using the K-means clustering algorithm. Compared with the white matter and white-matter functional network connectivity of the healthy controls group, we found significantly decreased white matter and white-matter functional network connectivity mainly located within the Occipital network, Middle temporo-frontal network, and Deep network in autism spectrum disorder. Compared with healthy controls, findings from white-matter gray-matter functional network connectivity showed the decreased white-matter gray-matter functional network connectivity mainly distributing in the Occipital network and Deep network. Moreover, we compared the spontaneous activity of white-matter functional networks between the two groups. We found that the spontaneous activity of Middle temporo-frontal and Deep network was significantly decreased in autism spectrum disorder. Finally, the correlation analysis showed that the white matter and white-matter functional network connectivity between the Middle temporo-frontal network and others networks and the spontaneous activity of the Deep network were significantly correlated with the Social Responsiveness Scale scores of autism spectrum disorder. Together, our findings indicate that changes in the white-matter functional networks are associated behavioral deficits in autism spectrum disorder.

Funder

Medical Science and Technology Research Fund of Guangdong Province

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3