Author:
Piranej Selma,Zhang Luona,Bazrafshan Alisina,Marin Mariana,Melikyan Gregory B.,Salaita Khalid
Abstract
AbstractAssays detecting viral infections play a significant role in limiting the spread of diseases such as SARS-CoV-2. Here we present Rolosense, a virus sensing platform that transduces the motion of synthetic DNA-based motors transporting 5-micron particles on RNA fuel chips. Motors and chips are modified with virus-binding aptamers that lead to stalling of motion. Therefore, motors perform a “mechanical test” of viral target and stall in the presence of whole virions which represents a unique mechanism of transduction distinct from conventional assays. Rolosense can detect SARS-CoV-2 spiked in artificial saliva and exhaled breath condensate with a sensitivity of 103copies/mL and discriminates among other respiratory viruses. The assay is modular and amenable to multiplexing, as we demonstrated one-pot detection of influenza A and SARS-CoV-2. As a proof-of-concept, we show readout can be achieved using a smartphone camera in as little as 15 mins without any sample preparation steps. Taken together, mechanical detection using Rolosense can be broadly applied to any viral target and has the potential to enable rapid, low-cost, point-of-care screening of circulating viruses.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献