Abstract
AbstractDynamic functional network connectivity (dFNC) analysis of resting state functional magnetic resonance imaging data has yielded insights into many neurological and neuropsychiatric disorders. A common dFNC analysis approach uses hard clustering methods like k-means clustering to assign samples to states that summarize network dynamics. However, hard clustering methods obscure network dynamics by assuming (1) that all samples within a cluster are equally like their assigned centroids and (2) that samples closer to one another in the data space than to their centroids are well-represented by their centroids. In addition, it can be hard to compare subjects, as in some cases an individual may not manifest a state strongly enough to enter a hard cluster. Approaches that allow a dimensional approach to connectivity patterns (e.g., fuzzy clustering) can mitigate these issues. In this study, we present an explainable fuzzy clustering framework by combining fuzzy c-means clustering with several explainability metrics. We apply our framework for schizophrenia (SZ) default mode network analysis, identifying 5 states and characterizing those states with a new explainability approach. While also showing that features typically used in hard clustering can be extracted in our framework, we present a variety of unique features to quantify state dynamics and identify effects of SZ upon network dynamics. We further uncover relationships between symptom severity and interactions of the precuneus with the anterior and posterior cingulate cortex. Given the ease of implementing our framework and its enhanced insight into network dynamics, it has great potential for use in future dFNC studies.
Publisher
Cold Spring Harbor Laboratory