Structural Insights on Ionizable Dlin-MC3-DMA Lipids in DOPC Layers by Combining Accurate Atomistic Force Fields, Molecular Dynamics Simulations and Neutron Reflectivity

Author:

Ibrahim Mohd,Gilbert Jennifer,Heinz Marcel,Nylander Tommy,Schwierz NadineORCID

Abstract

Ionizable lipids such as the promising Dlin-MC3-DMA (MC3) are essential for the successful design of lipid nanoparticles (LNPs) as drug delivery agents. Combining molecular dynamics simulations with experimental data such as neutron reflectivity experiments and other scattering techniques is essential to provide insights into the internal structure of LNPs, which is not fully understood to date. However, the accuracy of the simulations relies on the choice of force field parameters and high-quality experimental data is indispensable to verify the parametrization. For MC3, different parameterizations in combination with the CHARMM and the Slipids force field have recently emerged. Here, we complement the existing efforts by providing parameters for cationic and neutral MC3 compatible with the AMBER Lipid17 force field. Subsequently, we carefully assess the accuracy of the different force fields by providing a direct comparison to neutron reflectivity experiments of mixed lipid bilayers consisting of MC3 and DOPC at different pH. At low pH (cationic MC3) and at high pH (neutral MC3) the newly developed MC3 parameters in combination with AMBER Lipid17 for DOPC give good agreement with the experiments. Overall, the agreement is similar compared to the Park-Im parameters for MC3 in combination with the CHARMM36 force field for DOPC. The Ermilova-Swenson MC3 parameters in combination with the Slipids force field underestimate the bilayer thickness. While the distribution of cationic MC3 is very similar, the different force fields for neutral MC3 reveal distinct differences ranging from strong accumulation in the membrane center (current MC3/AMBER Lipid17 DOPC), over mild accumulation (Park-Im MC3/CHARMM36 DOPC) to surface accumulation (Ermilova-Swenson MC3/Slipids DOPC). These pronounced differences highlight the importance of accurate force field parameters and their experimental validation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3