Conformational analysis of chromosome structures reveals vital role of chromosome morphology in gene function

Author:

Zhan Yuxiang,Yildirim Asli,Boninsegna Lorenzo,Alber Frank

Abstract

AbstractThe 3D conformations of chromosomes are highly variant and stochastic between single cells. Recent progress in multiplexed 3D FISH imaging, single cell Hi-C and genome structure modeling allows a closer analysis of the structural variations of chromosomes between cells to infer the functional implications of structural heterogeneity. Here, we introduce a two-step dimensionality reduction method to classify a population of single cell 3D chromosome structures, either from simulation or imaging experiment, into dominant conformational clusters with distinct chromosome morphologies. We found that almost half of all structures for each chromosome can be described by 5-10 dominant chromosome morphologies, which play a fundamental role in establishing conformational variation of chromosomes. These morphologies are conserved in different cell types, but vary in their relative proportion of structures. Chromosome morphologies are distinguished by the presence or absence of characteristic chromosome territory domains, which expose some chromosomal regions to varying nuclear environments in different morphologies, such as nuclear positions and associations to nuclear speckles, lamina, and nucleoli. These observations point to distinct functional variations for the same chromosomal region in different chromosome morphologies. We validated chromosome conformational clusters and their associated subnuclear locations with data from DNA-MERFISH imaging and single cell sci-HiC data. Our method provides an important approach to assess the variation of chromosome structures between cells and link differences in conformational states with distinct gene functions.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3