Insights into the mechanism of mycelium transformation ofStreptomyces toxytriciniinto pellet

Author:

Kumar PunitORCID,Khushboo ORCID,Rajput DeepanshiORCID,Dubey Kashyap KumarORCID

Abstract

AbstractFormation of the mycelial pellet in submerged cultivation ofStreptomycetesis unwanted in industrial fermentation processes as it imposes mass transfer limitations, changes in the rheology of a medium, and affects the production of secondary metabolites. Though detailed information is not available about the factors involved in regulating mycelial morphology but it is studied that culture conditions and genetic information of strain play a key role. Moreover, the proteomic study has revealed the involvement of low molecular weight proteins such as; DivIVA, FilP, ParA, Scy, and SsgA proteins in apical growth and branching of hyphae which results in the establishment of the mycelial network. The present study proposes the mechanism of pellet formation ofStreptomyces toxytricini(NRRL B-5426) with the help of microscopic and proteomic analysis. The microscopic analysis revealed that growing hyphae followed a certain organized path of growth and branching, which was further converted into the pellet, and proteomic analysis revealed the production of low molecular weight proteins, which possibly participate in the regulation of pellet morphology.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3